Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
An Acad Bras Cienc ; 96(1): e20220970, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38597498

RESUMO

Henoch-Schonlein purpura nephritis (HSPN) is a systemic vascular inflammatory disease. Huanglian Decoction (HLD) ameliorates renal injury in nephritis; however, the mechanism of action of HLD on HSPN has not been investigated. This study aimed to investigate the protective mechanism of HLD treatment in HSPN. The effects of HLD on HSPN biochemical indices, kidney injury and NF-κB/NLRP3 signaling pathway were analyzed by biochemical analysis, ELISA, HE and PAS staining, immunohistochemistry, immunofluorescence, and Western Blot. In addition, the effects of HLD on HSPN cells were analyzed. We found that HLD treatment significantly reduced renal tissue damage, decreased the levels of IL-17, IL-18, TNF-α, and IL-1ß, and increased the levels of TP and ALB in HSPN mice. It also inhibited the deposition of IgA, IgG, and C3 in kidney tissues and significantly decreased the expression of IκBα, p-IκBα, NLRP3, caspase-1, and IL-1ß in kidney tissues and cells. In addition, PMA treatment inhibited the above-mentioned effects of HLD. These results suggested that HLD attenuates renal injury, IgA deposition, and inflammation in HSPN mice and its mechanism of action may be related to the inhibition of the NF-κB/NLRP3 pathway.


Assuntos
Medicamentos de Ervas Chinesas , Vasculite por IgA , Nefrite , Animais , Camundongos , Vasculite por IgA/tratamento farmacológico , NF-kappa B , Inibidor de NF-kappaB alfa , Proteína 3 que Contém Domínio de Pirina da Família NLR , Rim , Nefrite/tratamento farmacológico , Imunoglobulina A , Transdução de Sinais
2.
Nano Lett ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588010

RESUMO

Hampered by their susceptibility to nucleophilic attack and chemical bleaching, electron-deficient squaraine dyes have long been considered unsuitable for biological imaging. This study unveils a surprising twist: in aqueous environments, bleaching is not irreversible but rather a reversible spontaneous quenching process. Leveraging this new discovery, we introduce a novel deep-red squaraine probe tailored for live-cell super-resolution imaging. This probe enables single-molecule localization microscopy (SMLM) under physiological conditions without harmful additives or intense lasers and exhibits spontaneous blinking orchestrated by biological nucleophiles, such as glutathione or hydroxide anion. With a low duty cycle (∼0.1%) and high-emission rate (∼6 × 104 photons/s under 400 W/cm2), the squaraine probe surpasses the benchmark Cy5 dye by 4-fold and Si-rhodamine by a factor of 1.7 times. Live-cell SMLM with the probe reveals intricate structural details of cell membranes, which demonstrates the high potential of squaraine dyes for next-generation super-resolution imaging.

3.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 202-207, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387922

RESUMO

OBJECTIVE: To investigate the effects of Ziyin Liangxue formula combined with prednisone on immune function and the ST2/IL-33 pathway in mice with immune thrombocytopenia. METHODS: In 40 BALB/c mice, 32 were constructed as immune thrombocytopenia mouse models by antiplatelet serum injection. After successful modeling, the mice were randomly divided into model group, Ziyin Liangxue formula group (0.2 ml/10 g), prednisone group (0.2 ml/10 g), and Ziyin Liangxue formula + prednisone group (0.2 ml/10 g), 8 mice in each group, and the other 8 mice were set as control group. The drugs were administered by gavage at the dose, and the model group and control group were given equal amounts of saline by gavage once a day for 2 weeks of continuous intervention. Blood samples and spleen tissues were collected, the peripheral platelet count was measured by automatic hematology analyzer, the pathological changes in spleen tissue was observed by HE staining, the levels of serum transforming growth factor (TGF)-ß, interleukin (IL)-17, and peripheral blood thrombopoietin (TPO) were detected by enzyme-linked immunosorbent assay (ELISA), the expression of IL-33, sST2, and ST2 in spleen tissue was detected by Western blot, and the cell counts of peripheral blood Th17 and Treg were detected by flow cytometry. RESULTS: Compared with the control group, the number of platelets, the level of TPO, TGF-ß, and Treg cells were significantly decreased (P <0.05), while the level of IL-17, Th17 cells, and the expression of IL-33, sST2, and ST2 protein were significantly increased in the model group (P <0.01). Compared with the model group, the number of platelets, the level of TPO, TGF-ß, and Treg cells were significantly increased (P <0.05), while the level of IL-17, Th17 cells, and the expression of IL-33, sST2, and ST2 protein were significantly decreased in the Ziyin Liangxue formula + prednisone group (P <0.01). CONCLUSION: Ziyin Liangxue formula + prednisone can effectively regulate Th17/Treg balance, thus effectively improve immune thrombocytopenia, and the mechanism may be related to the regulation of ST2/IL-33 signaling pathway.


Assuntos
Púrpura Trombocitopênica Idiopática , Trombocitopenia , Camundongos , Animais , Prednisona , Interleucina-17/metabolismo , Proteína 1 Semelhante a Receptor de Interleucina-1 , Interleucina-33 , Fator de Crescimento Transformador beta , Imunidade
4.
Biomacromolecules ; 25(3): 1838-1849, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38378470

RESUMO

Considering the complexity of physiological microenvironments and the risks of surgical infection, there still remains critical demand to develop a hydrogel as a drug release platform with multifunctional properties, including good neutral stability and sensitive multiple stimuli-responsive behaviors, as well as injectable and self-healing properties. Herein, we present a facile preparation of injectable, self-healing hydrogels with acid and glutathione (GSH) dual-responsiveness for controlled drug delivery. Initially, the anticancer drug camptothecin (CPT) was premodified with disulfide bonds and attached to poly(ethylenimine) (PEI) via the Schiff base reaction, resulting in PEI-CPT. Subsequently, OSA-IR780 was synthesized through the Schiff base reaction involving IR780 with amine groups (IR780-NH2) and oxidized sodium alginate with aldehyde groups (OSA). The formation of PEI-CPT/OSA-IR780 hydrogels with various solid contents occurred rapidly within 40 s through a simple mixing process of the aqueous solution of PEI-CPT and OSA-IR780. These hydrogels exhibited remarkable stability under neutral conditions and controlled release of CPT upon exposure to simulated tumor environments characterized by acidic conditions and elevated GSH concentrations. Furthermore, they had significant injectable and self-healing properties due to the dynamically imine-cross-linked networks. In addition, the prepared hydrogels exhibited long-term biodegradability and biocompatibility. Collectively, these features indicate the great potential of PEI-CPT/OSA-IR780 hydrogels as therapeutic delivery vehicles.


Assuntos
Antineoplásicos , Hidrogéis , Hidrogéis/química , Bases de Schiff , Sistemas de Liberação de Medicamentos , Glutationa/metabolismo , Liberação Controlada de Fármacos
5.
J Biochem Mol Toxicol ; 38(2): e23641, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38348709

RESUMO

Cyclophosphamide (CTX) is a common anticancer chemotherapy drug, and myelosuppression is the most common serious side effect. Asperuloside (ASP), the active component of Hedyotis diffusa Willd., may have the effect of ameliorating chemotherapy-induced myelosuppression. This study aimed to explore the effect and possible mechanism of ASP on CTX-induced myelosuppression. Male SPF C57BL/6 mice were randomly divided into five groups: control group, CTX (25 mg/kg) group, CTX + granulocyte-macrophage-colony stimulating factor (GM-CSF) (5 µg/kg) group, CTX + high-dose ASP (50 mg/kg) group and CTX + low-dose ASP (25 mg/kg) group, with six mice in each group. The body weight of mice was monitored every other day, the hematopoietic progenitor cell colony number was measured by colony forming unit, and the relevant blood indicators were detected. Femoral bone marrow was observed by hematoxylin-eosin, C-kit expression was detected by immunohistochemistry, and autophagy and adenine monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway protein expressions were detected by immunohistochemistry and western blotting (WB). Then the AMPK inhibitor dorsomorphin was used to interfere with AMPK/mTOR pathway. Results showed that ASP significantly increased the body weight of CTX-induced mice, increased the number of hematopoietic progenitor cells, the expression of white blood cells, red blood cells, platelets, GM-CSF, thrombopoietin and erythropoietin in blood, and the expression of C-kit in bone marrow. In addition, ASP further promoted the expression of Beclin1 and LC-3II/I induced by CTX, and regulated the protein expressions in the AMPK/mTOR pathway. The use of dorsomorphin inhibited the alleviation effect of ASP on CTX-induced myelosuppression and the promotion effect of ASP on autophagy. In conclusion, ASP alleviated CTX-induced myelosuppression by promoting AMPK/mTOR pathway-mediated autophagy.


Assuntos
Antineoplásicos , Monoterpenos Ciclopentânicos , Glucosídeos , Fator Estimulador de Colônias de Granulócitos e Macrófagos , Piranos , Animais , Masculino , Camundongos , Proteínas Quinases Ativadas por AMP , Autofagia , Peso Corporal , Ciclofosfamida/efeitos adversos , Ciclofosfamida/toxicidade , Mamíferos , Camundongos Endogâmicos C57BL , Serina-Treonina Quinases TOR
6.
Sci Rep ; 14(1): 968, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200066

RESUMO

Previous intervention studies have shown some benefits of dark chocolate for the cardiovascular system, but it has not been established whether dark chocolate intake is associated with the risk of cardiovascular diseases (CVDs). To investigate the causality between dark chocolate intake and the risk of CVDs, a Mendelian randomization (MR) study was conducted. We obtained summary-level data on dark chocolate intake and CVDs from publicly available genome-wide association studies. In this MR study, the main approach was to use a fixed-effect model with inverse variance weighted (IVW) and evaluate the robustness of the results via sensitivity analysis. We found that dark chocolate intake was significantly associated with the reduction of the risk of essential hypertension (EH) (OR = 0.73; 95% CI 0.60-0.88; p = 1.06 × 10-3), as well as with the suggestive association to the reduced risk of venous thromboembolism (OR = 0.69; 95% CI 0.50-0.96; p = 2.81 × 10-2). However, no association was found between dark chocolate intake and the other ten CVDs. Our study provides evidence for a causality between dark chocolate intake and a reduced risk of EH, which has important implications for the prevention of EH in the population.


Assuntos
Doenças Cardiovasculares , Chocolate , Humanos , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Hipertensão Essencial
7.
Heliyon ; 10(1): e23580, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38226258

RESUMO

Context: Chronic myeloid leukemia (CML) is a malignant hematopoietic stem cell disease caused by excessive proliferation and abnormal differentiation of hematopoietic stem cells. Asperuloside (ASP) is considered to have good biological activity and may be a good anti-CML drug. Objective: This study aimed to explore the effects and possible mechanisms of ASP on the biological behavior of K562 cells based on RNA-seq. Materials and methods: The IC50 of ASP in K562 cells was calculated by the concentration-effect curve. Cell viability, apoptosis, and differentiation were detected by CCK8, flow cytometry, benzidine staining, and WB analysis, respectively. Further, RNA-seq was used to analyze the possible mechanism of ASP regulating K562 cells. Results: ASP significantly inhibited the proliferation, and promoted apoptosis and differentiation of K562 cells. A total of 117 differentially expressed genes were screened by RNA-seq, mainly involved in the RAS/MEK/ERK pathway. PD98059 was used to inhibit the RAS/MEK/ERK pathway in K562 cells, and results confirmed that PD98059 could not only inhibit the RAS/MEK/ERK pathway, but also inhibit the regulation of ASP on the proliferation and differentiation of K562 cells. Conclusion: ASP inhibited the proliferation, promoted apoptosis and differentiation of K562 cells by regulating the RAS/MEK/ERK pathway, and played a good anti-CML role.

8.
Angew Chem Int Ed Engl ; 63(1): e202316192, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37975636

RESUMO

Fluorescent probes are essential for single-molecule imaging. However, their application in biological systems is often limited by the short photobleaching lifetime. To overcome this, we developed a novel thiolation strategy for squaraine dyes. By introducing thiolation of the central cyclobutene of squaraine (thio-squaraine), we observed a ≈5-fold increase in photobleaching lifetime. Our single-molecule data analysis attributes this improvement to improved photostability resulting from thiolation. Interestingly, bulk measurements show rapid oxidation of thio-squaraine to its oxo-analogue under irradiation, giving the perception of inferior photostability. This discrepancy between bulk and single-molecule environments can be ascribed to the factors in the latter, including larger intermolecular distances and restricted mobility, which reduce the interactions between a fluorophore and reactive oxygen species produced by other fluorophores, ultimately impacting photobleaching and photoconversion rate. We demonstrate the remarkable performance of thio-squaraine probes in various imaging buffers, such as glucose oxidase with catalase (GLOX) and GLOX+trolox. We successfully employed these photostable probes for single-molecule tracking of CD56 membrane protein and monitoring mitochondria movements in live neurons. CD56 tracking revealed distinct motion states and the corresponding protein fractions. This investigation is expected to propel the development of single-molecule imaging probes, particularly in scenarios where bulk measurements show suboptimal performance.


Assuntos
Ciclobutanos , Corantes Fluorescentes , Fotodegradação , Fenóis , Ionóforos
9.
Plant Dis ; 108(1): 71-81, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37467133

RESUMO

Stripe rust (or yellow rust), caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Currently, the utilization of resistant cultivars is the most viable way to reduce yield losses. In this study, a panel of 188 wheat accessions from China was evaluated for stripe rust resistance, and genome-wide association studies were performed using high-quality Diversity Arrays Technology markers. According to the phenotype and genotype data, a total of 26 significant marker-trait associations were identified, representing 18 quantitative trait loci (QTLs) on chromosomes 1B, 2A, 2B, 3A, 3B, 5A, 5B, 6B, 7B, and 7D. Of the 18 QTLs, almost all were associated with adult plant resistance (APR) except QYr.nwsuaf-6B.2, which was associated with all-stage resistance (also known as seedling resistance). Three of the 18 QTLs were mapped far from previously identified Pst resistance genes and QTLs and were considered potentially new loci. The other 15 QTLs were mapped close to known resistance genes and QTLs. Subsequent haplotype analysis for QYr.nwsuaf-2A and QYr.nwsuaf-7B.3 revealed the degrees of resistance of the panel in the APR stage. In summary, the favorable alleles identified in this study may be useful in breeding for disease resistance to stripe rust.


Assuntos
Basidiomycota , Estudo de Associação Genômica Ampla , Triticum/genética , Melhoramento Vegetal , Locos de Características Quantitativas/genética , Fenótipo , Basidiomycota/genética
10.
Am J Physiol Cell Physiol ; 326(2): C331-C347, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38047307

RESUMO

Diabetic cardiomyopathy (dCM) is a major complication of diabetes; however, specific treatments for dCM are currently lacking. RTA 408, a semisynthetic triterpenoid, has shown therapeutic potential against various diseases by activating the nuclear factor erythroid 2-related factor 2 (Nrf2) signaling pathway. We established in vitro and in vivo models using high glucose toxicity and db/db mice, respectively, to simulate dCM. Our results demonstrated that RTA 408 activated Nrf2 and alleviated various dCM-related cardiac dysfunctions, both in vivo and in vitro. Additionally, it was found that silencing the Nrf2 gene eliminated the cardioprotective effect of RTA 408. RTA 408 ameliorated oxidative stress in dCM mice and high glucose-exposed H9C2 cells by activating Nrf2, inhibiting mitochondrial fission, exerting anti-inflammatory effects through the Nrf2/NF-κB axis, and ultimately suppressing apoptosis, thereby providing cardiac protection against dCM. These findings provide valuable insights for potential dCM treatments.NEW & NOTEWORTHY We demonstrated first that the nuclear factor erythroid 2-related factor 2 (Nrf2) activator RTA 408 has a protective effect against diabetic cardiomyopathy. We found that RTA 408 could stimulate the nuclear entry of Nrf2 protein, regulate the mitochondrial fission-fusion balance, and redistribute p65, which significantly alleviated the oxidative stress level in cardiomyocytes, thereby reducing apoptosis and inflammation, and protecting the systolic and diastolic functions of the heart.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Triterpenos , Camundongos , Animais , NF-kappa B/genética , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Dinâmica Mitocondrial , Estresse Oxidativo , Inflamação/metabolismo , Triterpenos/metabolismo , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Miócitos Cardíacos/metabolismo , Glucose/metabolismo , Diabetes Mellitus/metabolismo
11.
Phytopathology ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38038706

RESUMO

Wheat powdery mildew, caused by Blumeria graminis f. sp. tritic (Bgt), is one of the most prevalent diseases of wheat worldwide and can lead to severe yield reductions. Identifying genes involved in powdery mildew resistance will be useful for disease resistance breeding and control. Calreticulin (CRT) is a member of a multigene family widely found in higher plants and is associated with a variety of plant physiological functions and defense responses. However, the role of CRT in wheat resistance to powdery mildew remains uncertain. TaCRT3 was identified from the proteomic sequence of an incompatible interaction between the wheat (Triticum aestivum) cultivar Xingmin 318 and the Bgt isolate E09. Following analysis of transient expression of the GFP-TaCRT3 fusion protein in Nicotiana benthamiana leaves, TaCRT3 was localized in the nucleus, cytoplasm, and cell membrane. Transcript expression levels of TaCRT3 were significantly upregulated in the wheat-Bgt incompatible interaction. More critically, knockdown of TaCRT3 using VIGS resulted in attenuated resistance to Bgt in wheat. Histological analysis showed a significant increase in Bgt development in TaCRT3-silenced plants, whereas pathogen-related (PR) gene was significantly downregulated in TaCRT3-silenced leaves. In addition, overexpression of TaCRT3 in wheat enhanced the resistance to powdery mildew, the growth of Bgt was significantly inhibited, and the area of H2O2 near the infection site and the expression of defense-related genes of the salicylic acid (SA)pathway significantly increased. These findings imply that TaCRT3 may act as a disease resistance factor that positively regulates resistance to powdery mildew, during which SA signaling is probably activated.

12.
Polymers (Basel) ; 15(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139886

RESUMO

This contribution reports the synthesis of polyhydroxyurethane (PHU)-poly(ethylene oxide) (PEO) multiblock copolymer networks crosslinked with polysilsesquioxane (PSSQ). First, the linear PHU-PEO multiblock copolymers were synthesized via the step-growth polymerization of bis(6-membered cyclic carbonate) (B6CC) with α,ω-diamino-terminated PEOs with variable molecular weights. Thereafter, the PHU-PEO copolymers were allowed to react with 3-isocyanatopropyltriethoxysilane (IPTS) to afford the derivatives bearing triethoxysilane moieties, the hydrolysis and condensation of which afforded the PHU-PEO networks crosslinked with PSSQ. It was found that the PHU-PEO networks displayed excellent reprocessing properties in the presence of trifluoromethanesulfonate [Zn(OTf)2]. Compared to the PHU networks crosslinked via the reaction of difunctional cyclic carbonate with multifunctional amines, the organic-inorganic PHU networks displayed the decreased reprocessing temperature. The metathesis of silyl ether bonds is responsible for the improved reprocessing behavior. By adding lithium trifluoromethanesulfonate (LiOTf), the PHU-PEO networks were further transformed into the solid polymer electrolytes. It was found that the crystallization of PEO chains in the crosslinked networks was significantly suppressed. The solid polymer electrolytes had the ionic conductivity as high as 7.64 × 10-5 S × cm-1 at 300 K. More importantly, the solid polymer electrolytes were recyclable; the reprocessing did not affect the ionic conductivity.

13.
Front Cardiovasc Med ; 10: 1149351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915740

RESUMO

Background: Ivabradine improves cardiac function in patients with heart failure, but its effect on dilated cardiomyopathy (DCM) remains unclear. We performed a systematic review and meta-analysis to study the efficacy and potential mechanisms of ivabradine's effect on cardiac function and prognosis in patients with DCM. Methods: We searched PubMed, Cochrane Library, Embase, Web of Science, and four registers through September 28, 2022. All controlled trials of ivabradine for the treatment of DCM with congestive heart failure were included. Articles were limited to English, with the full text and necessary data available. We performed random- or fixed effects meta-analyses for all included outcome measures and compared the effect sizes for outcomes in patients treated with and without ivabradine. The quality of the studies was assessed using the Cochrane risk-of-bias tool for randomized trials (RoB2.0). Findings: Five trials with 357 participants were included. The pooled risk ratio was 0.48 [95% confidence interval (CI) (0.18, 1.25)] for all-cause mortality and 0.38 [95% CI (0.12, 1.23)] for cardiac mortality. The pooled mean difference was -15.95 [95% CI (-19.97, -11.92)] for resting heart rate, 3.96 [95% CI (0.99, 6.93)] for systolic blood pressure, 2.93 [95% CI (2.09, 3.77)] for left ventricular ejection fraction, -5.90 [95% CI (-9.36, -2.44)] for left ventricular end-systolic diameter, -3.41 [95% CI (-5.24, -1.58)] for left ventricular end-diastolic diameter, -0.81 [95% CI (-1.00, -0.62)] for left ventricular end-systolic volume, -0.67 [95% CI (-0.86, -0.48)] for left ventricular end-diastolic volume, -11.01 [95% CI (-19.66, -2.35)] for Minnesota Living with Heart Failure score, and -0.52 [95% CI (-0.73, -0.31)] for New York Heart Association class. Interpretation: Ivabradine reduces heart rate and ventricular volume, and improves cardiac function in patients with DCM, but showed no significant effect on the prognosis of patients.

14.
J Fungi (Basel) ; 9(10)2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37888265

RESUMO

Protein disulfide isomerase (PDI) is a member of the thioredoxin (Trx) superfamily with important functions in cellular stability, ion uptake, and cellular differentiation. While PDI has been extensively studied in humans and animals, its role in fungi remains relatively unknown. In this study, the biological functions of FgEps1, a disulfide bond isomerase in the fungal pathogen Fusarium graminearum, were investigated. It was found that FgEps1 mutation affected nutritional growth, asexual and sexual reproduction, and stress tolerance. Additionally, its deletion resulted in reduced pathogenicity and impaired DON toxin biosynthesis. The involvement of FgEps1 in host infection was also confirmed, as its expression was detected during the infection period. Further investigation using a yeast signal peptide secretion system and transient expression in Nicotiana benthamiana showed that FgEps1 suppressed the immune response of plants and promoted infection. These findings suggest that virulence factor FgEps1 plays a crucial role in growth, development, virulence, secondary metabolism, and host infection in F. graminearum.

15.
Artigo em Inglês | MEDLINE | ID: mdl-37756370

RESUMO

Aims: The relationship between the gut microbiota and cardiovascular system has been increasingly clarified. Fecal microbiota transplantation (FMT), used to improve gut microbiota, has been applied clinically for disease treatment and has great potential in combating doxorubicin (DOX)-induced cardiotoxicity. However, the application of FMT in the cardiovascular field and its molecular mechanisms are poorly understood. Results: During DOX-induced stress, FMT alters the gut microbiota and serum metabolites, leading to a reduction in cardiac injury. Correlation analysis indicated a close association between serum metabolite indole-3-propionic acid (IPA) and cardiac function. FMT and IPA achieve this by facilitating the translocation of Nfe2l2 (Nrf2) from the cytoplasm to the nucleus, thereby activating the expression of antioxidant molecules, reducing reactive oxygen species production, and inhibiting excessive mitochondrial fission. Consequently, mitochondrial function is preserved, leading to the mitigation of cardiac injury under DOX-induced stress. Innovation: FMT has the ability to modify the composition of the gut microbiota, providing not only protection to the intestinal mucosa but also influencing the generation of serum metabolites and regulating the Nrf2 gene to modulate the balance of cardiac mitochondrial fission and fusion. This study comprehensively demonstrates the efficacy of FMT in countering DOX-induced myocardial damage and elucidates the pathways linking the microbiota and the heart. Conclusion: FMT alters the gut microbiota and serum metabolites of recipient mice, promoting nuclear translocation of Nrf2 and subsequent activation of downstream antioxidant molecule expression, while inhibiting excessive mitochondrial fission to preserve cardiac integrity. Correlation analysis highlights IPA as a key contributor among differentially regulated metabolites.

16.
Appl Microbiol Biotechnol ; 107(24): 7403-7416, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37773218

RESUMO

Cordycepin, a nucleoside analog, is the main antioxidative and antimicrobial substance in Cordyceps militaris. To improve the metabolism of cordycepin, carbon sources, nitrogen sources, trace elements, and precursors were studied by single factor, Plackett-Burman, and central composite designs in C. militaris mycelial fermentation. Under the regulation of the multifactorial interactions of selenite, ferrous chloride, xylose, and glycine, cordycepin production was increased by 5.2-fold compared with the control. The gene expression of hexokinase, ATP phosphoribosyltransferase, adenylosuccinate synthetase, and cns1-3 in the glycolysis, pentose phosphate, and adenosine synthesis pathways were increased by 3.2-7.5 times due to multifactorial interactions, while the gene expression of histidine biosynthesis trifunctional protein and histidinol-phosphate aminotransferase in histidine synthesis pathway were decreased by 23.4%-56.2%. Increasing with cordycepin production, glucose uptake was accelerated, mycelia growth was inhibited, and the cell wall was damaged. Selenomethionine (SeMet), selenocysteine (SeCys), and selenium nanoparticles (SeNPs) were the major Se species in C. militaris mycelia. This study provides a new insight for promoting cordycepin production by regulating glycolysis, pentose phosphate, and histidine metabolism. KEY POINTS: • Cordycepin production in the CCDmax group was 5.2-fold than that of the control. • Glucose uptake of the CCDmax group was accelerated and cell wall was damaged. • The metabolic flux was concentrated to the cordycepin synthesis pathway.


Assuntos
Cordyceps , Selênio , Selênio/metabolismo , Xilose/metabolismo , Ferro/metabolismo , Glicina/metabolismo , Histidina/metabolismo , Desoxiadenosinas/metabolismo , Glucose/metabolismo , Fosfatos/metabolismo
17.
BMC Surg ; 23(1): 254, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635206

RESUMO

BACKGROUND: To investigate the relationship between tongue fat content and severity of obstructive sleep apnea (OSA) and its effects on the efficacy of uvulopalatopharyngoplasty (UPPP) in the Chinese group. METHOD: Fifty-two participants concluded to this study were diagnosed as OSA by performing polysomnography (PSG) then they were divided into moderate group and severe group according to apnea hypopnea index (AHI). All of them were also collected a series of data including age, BMI, height, weight, neck circumference, abdominal circumference, magnetic resonance imaging (MRI) of upper airway and the score of Epworth Sleepiness Scale (ESS) on the morning after they completed PSG. The relationship between tongue fat content and severity of OSA as well as the association between tongue fat content in pre-operation and surgical efficacy were analyzed.Participants underwent UPPP and followed up at 3rd month after surgery, and they were divided into two groups according to the surgical efficacy. RESULTS: There were 7 patients in the moderate OSA group and 45 patients in the severe OSA group. The tongue volume was significantly larger in the severe OSA group than that in the moderate OSA group. There was no difference in tongue fat volume and tongue fat rate between the two groups. There was no association among tongue fat content, AHI, obstructive apnea hypopnea index, obstructive apnea index and Epworth sleepiness scale (all P > 0.05), but tongue fat content was related to the lowest oxygen saturation (r=-0.335, P < 0.05). There was no significantly difference in pre-operative tongue fat content in two different surgical efficacy groups. CONCLUSIONS: This study didn't show an association between tongue fat content and the severity of OSA in the Chinese group, but it suggested a negative correlation between tongue fat content and the lowest oxygen saturation (LSaO2). Tongue fat content didn't influence surgical efficacy of UPPP in Chinese OSA patients. TRIAL REGISTRATION: This study didn't report on a clinical trial, it was retrospectively registered.


Assuntos
Adiposidade , População do Leste Asiático , Procedimentos Cirúrgicos Otorrinolaringológicos , Apneia Obstrutiva do Sono , Língua , Humanos , Povo Asiático , Polissonografia , Apneia Obstrutiva do Sono/diagnóstico , Apneia Obstrutiva do Sono/cirurgia , Sonolência , Língua/anatomia & histologia , Língua/cirurgia
18.
Nano Lett ; 23(11): 5209-5216, 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37227052

RESUMO

Upconversion nanoparticles (UCNPs) doped with lanthanides have limited brightness due to their small absorption cross section to light. However, using organic sensitizers can significantly enhance their light absorption ability. Unfortunately, the practical application of organic sensitizers has been hindered by poor stability and aggregation-caused quenching (ACQ). To address these issues, we developed a novel squaraine-based dye, SQ-739, for sensitizing upconversion luminescence (UCL). This dye has a maximum absorption at 739 nm, and shows 1 order of magnitude and 2-fold improved chemical- and photostability, compared to the commonly used cyanine-based dye IR-806, respectively. When SQ-739 is used to sensitize UCNPs, the resulting SQ-739-UCNPs exhibit excellent photostability and reduced ACQ in the presence of polar solvents. Moreover, at the single particle level, the SQ-739-UCNPs exhibit a 97-fold increase in UCL emission compared to bare UCNPs. This squaraine dye-based system represents a new design strategy for developing highly stable and efficient NIR upconversion probes.

19.
Int Wound J ; 20(8): 3015-3022, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37194326

RESUMO

A meta-analysis investigation to measure the relationship between vitamin D deficiency (VDD) and diabetic foot ulcer (DFU). A comprehensive literature inspection till February 2023 was applied and 1765 interrelated investigations were reviewed. The 15 chosen investigations enclosed 2648 individuals with diabetes mellitus in the chosen investigations' starting point, 1413 of them were with DFUs, and 1235 were without DFUs. Odds ratio (OR) in addition to 95% confidence intervals (CIs) were used to compute the value of the relationship between VDD and DFU by the dichotomous and continuous approaches and a fixed or random model. Individuals with DFUs had significantly lower vitamin D levels (VDL) (MD, -7.14; 95% CI, -8.83 to -5.44, P < 0.001) compared to those without DFU individuals. Individuals with DFUs had a significantly higher number of VDD individuals (OR, 2.27; 95% CI, 1.63-3.16, P < 0.001) compared to those without DFU individuals. Individuals with DFU had significantly lower VDL and a significantly higher number of VDD individuals compared to those without DFU individuals. However, caused of the small sample sizes of several chosen investigations for this meta-analysis, care must be exercised when dealing with its values.


Assuntos
Diabetes Mellitus , Pé Diabético , Úlcera do Pé , Deficiência de Vitamina D , Humanos , Deficiência de Vitamina D/complicações
20.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 435-441, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37096516

RESUMO

OBJECTIVE: To investigate the effect of p-coumaric acid on apoptosis of multiple myeloma cells and its related mechanism. METHODS: Multiple myeloma cell line MM.1s cells were selected and treated with different concentrations of p-coumaric acid (0, 0.4, 0.8, 1.6, 3.2 mmol/L), and the inhibition rate and half inhibition concentration (IC50) were detected by CCK-8 method. Then MM.1s cells were treated with 1/2 IC50, IC50, 2 IC50 and transfected with ov-Nrf-2 and ov-Nrf-2+IC50. The apoptosis, ROS fluorescence intensity and mitochondrial membrane potential of MM.1s cells were detected by flow cytometry, and the relative expressions of cellular Nrf-2 and HO-1 protein were detected by Western blot. RESULTS: P-coumaric acid inhibited the proliferation of MM.1s cells in a dose-dependent manner(r =0.997) with an IC50 value of 2.754 mmol/L. Compared with the control group, apoptosis and ROS fluorescence intensity of MM.1s cells were significantly increased in the 1/2 IC50 group, IC50 group, 2 IC50 group and ov-Nrf-2+IC50 group (P <0.01), the expressions of Nrf-2, HO-1 protein in the IC50 group and 2 IC50 group were significantly decreased (P <0.05). Compared with the IC50 group, the cells apoptosis and ROS fluorescence intensity were significantly decreased (P <0.01), and the expressions of Nrf-2 and HO-1 protein were significantly increased in the ov-Nrf-2+IC50 group (P <0.01). CONCLUSION: P-coumaric acid can inhibit the proliferation of MM.1s cells and may target the Nrf-2/HO-1 signaling pathway to affect oxidative stress in MM cells thereby inducing their apoptosis.


Assuntos
Mieloma Múltiplo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Espécies Reativas de Oxigênio/farmacologia , Linhagem Celular Tumoral , Estresse Oxidativo , Apoptose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...